Bound states of the potential $V(r)=-Z e^{2} /(r+\beta)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 223161
(http://iopscience.iop.org/0305-4470/22/15/031)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 11:44

Please note that terms and conditions apply.

COMMENT

Bound states of the potential $V(r)=-Z e^{2} /(r+\beta)$

Pritam P Ray $\dagger \ddagger$ and Kalyaneswari Mahata§
\dagger International Centre for Theoretical Physics, Miramare, Trieste, Italy
§ Department of Physics, Visva-Bharati University, Santiniketan, WB 731235, India

Received 9 January 1989

Abstract

Energy eigenvalues of various states from $n=1$ to $n=4$ have been calculated in the framework of the shifted $1 / N$ expansion method. Results for s states are compared with those of Mehta and Patil for small β values. A new approximate formula has been developed for a quick estimate of energy eigenvalues for any angular momentum state.

The problem of determining the energy eigenvalues of the cutoff Coulomb potential

$$
\begin{equation*}
V(r)=-\frac{Z e^{2}}{r+\beta} \quad \beta>0 \tag{1}
\end{equation*}
$$

has been of some interest in the past [1]. As pointed out in [1], this potential may serve as an approximation to the potential due to a smeared charge distribution rather than a point charge and may be appropriate for describing mesonic atoms.

For s states the Schrödinger equation for the potential (1) yields exact closed solutions. But the actual determination of the eigenvalues from the zeros of the confluent hypergeometric function is not easy [1]. Besides, for non-zero angular momentum states, this potential does not admit closed solutions. For such problems, therefore, one has to resort to approximate methods. Mehta and Patil [1] carried out a dispersion theoretic study of the s wave bound states of this potential for small values of the parameter β and concluded that the energy eigenvalue $E(\beta)$ has a logarithmic branch cut at $\beta=0$ which precludes a strict perturbation series for $E(\beta)$ around $\beta=0$.

To make progress, we must make an expansion of some kind. In a number of bound-state problems [2-21] in non-relativistic quantum mechanics, $1 / N$, where N is a very large number of spatial dimension, has proved to be a very suitable expansion parameter. It is interesting to note in this context that in quantum chromodynamics one also encounters the apparent absence of a relevant expansion parameter. The large- N expansion technique has yielded useful approximate solutions for problems in QCD. Here, of course, N is the number of colours [4]. In this paper we investigate the eigenvalues of the potential (1) using a variant of the $1 / N$ expansion method. For spherically symmetric potentials the usual choice of the expansion parameter has been $1 / K$ with $K=N+2 l$, instead of $1 / N$. The convergence of this method, however, is rather slow. In order to improve upon the convergence Sukhatme and Imbo [13] modified the standard method and introduced what has come to be known as the shifted $1 / N$ expansion method, in which the expansion parameter is $1 / \bar{K}$, with $\bar{K}=N+2 l-a$ and a is a free parameter. The choice of this shift parameter a was motivated by requiring agreement between the $1 / \bar{K}$ expansions and the exact analytic

[^0]results for the harmonic oscillators and Coulomb potentials. In a sense, the shift a provides a physically motivated resummation of the perturbation series for the energy eigenstates, improving its convergence.

The reduced radial Schrödinger equation in N dimensions in terms of the shifted variable \bar{K} is

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+\frac{\bar{K}^{2} \hbar^{2}}{8 m r^{2}}\left(1-\frac{1-a}{\bar{K}}\right)\left(1-\frac{3-a}{\bar{K}}\right)+V(r)\right] u(r)=E u(r) \tag{2}
\end{equation*}
$$

where $V(r)$ is given by (1). The procedure for determining the energy eigenvalues from (2) is given in the paper by Imbo et al [14]. Hence, for the sake of brevity, we present here only the final expressions required to obtain the bound-state energies. The eigenvalues are given by

$$
\begin{equation*}
E_{n l}=\frac{\bar{K}^{2}}{r_{0}^{2}}\left[\left(\frac{\hbar^{2}}{8 m}+\frac{r_{0}^{2} V\left(r_{0}\right)}{\bar{K}^{2}}\right)+\frac{\gamma^{(1)}}{\bar{K}^{2}}+\frac{\gamma^{(2)}}{\bar{K}^{3}}+\mathrm{O}\left(\frac{1}{\bar{K}^{4}}\right)\right] \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{K}=N+2 l-a \tag{4a}\\
& a=2-2\left(2 n_{r}+1\right) \frac{m \omega}{\hbar} \quad n_{r}=0,1,2, \ldots \tag{4b}\\
& \omega=\frac{\hbar}{2 m}\left(3+\frac{r_{0} V^{(2)}\left(r_{0}\right)}{V^{(1)}\left(r_{0}\right)}\right)^{1 / 2} \tag{4c}
\end{align*}
$$

$V^{(n)}(x)$ being the nth derivative of $V(x) . r_{0}$ is determined from the equation

$$
\begin{equation*}
N+2 l-2+\left(2 n_{r}+1\right)\left(3+\frac{r_{0} V^{(2)}\left(r_{0}\right)}{V^{(1)}\left(r_{0}\right)}\right)^{1 / 2}=\left(\frac{4 m r_{0}^{3} V^{(1)}\left(r_{0}\right)}{\hbar^{2}}\right)^{1 / 2} . \tag{4d}
\end{equation*}
$$

$\gamma^{(1)}$ and $\gamma^{(2)}$ are given by

$$
\begin{align*}
& \gamma^{(1)}=\frac{\hbar^{2}}{8 m}(1-a)(3-a)+\left(1+2 n_{r}\right) \tilde{\varepsilon}_{2}+3\left(1+2 n_{r}+2 n_{r}^{2}\right) \tilde{\varepsilon}_{4} \\
&-\frac{1}{\hbar \omega}\left[\tilde{\varepsilon}_{1}^{2}+6\left(1+2 n_{r}\right) \tilde{\varepsilon}_{1} \tilde{\varepsilon}_{3}+\left(11+30 n_{r}+30 n_{r}^{2}\right) \tilde{\varepsilon}_{3}^{2}\right] \tag{5}
\end{align*}
$$

$$
\gamma^{(2)}=\left(1+2 n_{r}\right) \tilde{\delta}_{2}+3\left(1+2 n_{r}+2 n_{r}^{2}\right) \tilde{\delta}_{4}+5\left(3+8 n_{r}+6 n_{r}^{2}+4 n_{r}^{3}\right) \tilde{\delta}_{6}
$$

$$
-(1 / \hbar \omega)\left[\left(1+2 n_{r}\right) \tilde{\varepsilon}_{2}^{2}+12\left(1+2 n_{r}+2 n_{r}^{2}\right) \tilde{\varepsilon}_{2} \tilde{\varepsilon}_{4}+2\left(21+59 n_{r}\right.\right.
$$

$$
\left.+51 n_{r}^{2}+34 n_{r}^{3}\right) \tilde{\varepsilon}_{4}^{2}+2 \tilde{\varepsilon}_{1} \tilde{\delta}_{1}+6\left(1+2 n_{r}\right) \tilde{\varepsilon}_{1} \tilde{\delta}_{3}+30\left(1+2 n_{r}+2 n_{r}^{2}\right) \tilde{\varepsilon}_{1} \tilde{\delta}_{5}
$$

$$
+6\left(1+2 n_{r}\right) \tilde{\varepsilon}_{3} \tilde{\delta}_{1}+2\left(11+30 n_{r}+30 n_{r}^{2}\right) \tilde{\varepsilon}_{3} \tilde{\delta}_{3}
$$

$$
\left.+10\left(13+40 n_{r}+42 n_{r}^{2}+28 n_{r}^{3}\right) \tilde{\varepsilon}_{3} \tilde{\delta}_{s}\right]
$$

$$
+\left[1 /(\hbar \omega)^{2}\right]\left[4 \tilde{\varepsilon}_{1}^{2} \tilde{\varepsilon}_{2}+36\left(1+2 n_{r}\right) \tilde{\varepsilon}_{1} \tilde{\varepsilon}_{2} \tilde{\varepsilon}_{3}+8\left(11+30 n_{r}+30 n_{r}^{2}\right) \tilde{\varepsilon}_{2} \tilde{\varepsilon}_{3}^{2}\right.
$$

$$
+24\left(1+2 n_{r}\right) \tilde{\varepsilon}_{1}^{2} \tilde{\varepsilon}_{4}+8\left(31+78 n_{r}+78 n_{r}^{2}\right) \tilde{\varepsilon}_{1} \tilde{\varepsilon}_{3} \tilde{\varepsilon}_{4}
$$

$$
\left.+12\left(57+189 n_{r}+225 n_{r}^{2}+150 n_{r}^{3}\right) \tilde{\varepsilon}_{3}^{2} \tilde{\varepsilon}_{4}\right]
$$

$$
-\left[1 /(\hbar \omega)^{3}\right]\left[8 \tilde{\varepsilon}_{1}^{3} \tilde{\varepsilon}_{3}+108\left(1+2 n_{r}\right) \tilde{\varepsilon}_{1}^{2} \tilde{\varepsilon}_{3}^{2}+48\left(11+30 n_{r}+30 n_{r}^{2}\right) \tilde{\varepsilon}_{1} \tilde{\varepsilon}_{3}^{3}\right.
$$

$$
\begin{equation*}
\left.+30\left(31+109 n_{r}+141 n_{r}^{2}+94 n_{r}^{3}\right) \tilde{\varepsilon}_{3}^{4}\right] \tag{6}
\end{equation*}
$$

with

$$
\tilde{\varepsilon}_{j}=\frac{\varepsilon_{j}}{(2 m \omega / \hbar)^{j / 2}} \quad \tilde{\delta}_{j}=\frac{\delta_{j}}{(2 m \omega / \hbar)^{j / 2}} \quad j=1,2, \ldots
$$

It is easy to see from (3) that for $\beta \rightarrow 0, \gamma^{(1)}$ and $\gamma^{(2)}$ vanish identically and one recovers the Coulomb result for $N=3$

$$
E_{n l}=-\frac{Z^{2}}{2 n^{2}} \frac{e^{2}}{a_{0}} \quad n=n_{r}+l+1 .
$$

Once r_{0} is determined from (4d) for the potential (1) in the three-dimensional world ($N=3$), the energy eigenvalues can readily be calculated from (3). We have calculated in atomic units ($e=m=\hbar=1$) the energy levels for the states from $n=1$ to $n=4$, which we display in tables 1 and 2 . With β non-zero, the accidental degeneracy of

Table 1. Comparison of the energy eigenvalues. Column A is the result of the shifted $1 / N$ expansion, equation (3); column B is the result of Mehta and Patil, equation (8); column C is the result according to our approximation, equation (10).

β	$-E_{1 s}$			$-E_{41}$	
	A	B	C	A	C
0.0	0.500000	0.500000	0.500000	0.031250	0.031250
0.0001	0.499812	0.499800	0.499799	0.031249	0.031249
0.001	0.498138	0.498027	0.498009	0.031245	0.031245
0.01	0.482534	0.481842	0.480947	0.031205	0.031205
0.1	0.386471	0.392103	0.364745	0.030813	0.030810
1.00	0.180023	-1.500 000	0.125000	0.027588	0.027359
2.0	0.124858	-14.590355	0.076201	0.024971	0.024353
3.0	0.098123		0.055555	0.022959	0.021957
4.0	0.081812		0.043966	0.021341	0.020000
5.0	0.070629		0.036492	0.019999	0.018371
10.0	0.043422		0.020000	0.015576	0.013096
15.0	0.032061		0.013888	0.013007	0.010204

Table 2. Energy eigenvalues ($-E_{n, 1}$) as a function of β for different excited states in atomic units.

β	$2 s$	$2 p$	$3 s$	$3 p$	$3 d$	$4 s$	$4 p$	$4 d$
0.0	0.12500	0.12500	0.05555	0.05555	0.05555	0.03125	0.03125	0.03125
0.0001	0.12498	0.12499	0.05555	0.05555	0.05555	0.03125	0.03125	0.03125
0.001	0.12483	0.12492	0.05552	0.05553	0.05554	0.03124	0.03124	0.03124
0.01	0.12333	0.12418	0.05518	0.05532	0.05541	0.03112	0.03116	0.03119
0.1	0.11127	0.11754	0.05213	0.05341	0.05414	0.03004	0.03041	0.03066
1.0	0.06961	0.08284	0.03744	0.04186	0.04501	0.02357	0.02533	0.02665
2.0	0.05438	0.06572	0.03085	0.03528	0.03878	0.02007	0.02209	0.02372
3.0	0.04589	0.05554	0.02696	0.03105	0.03448	0.01790	0.01992	0.02159
4.0	0.04023	0.04859	0.02426	0.02800	0.03125	0.01636	0.01829	0.01995
5.0	0.03607	0.04345	0.02223	0.02565	0.02870	0.01518	0.01701	0.01862
10.0	0.02480	0.02944	0.01634	0.01874	0.02102	0.01166	0.01306	0.01437
15.0	0.01944	0.02282	0.01332	0.01517	0.01697	0.00976	0.01082	0.01198

the Coulomb potential is immediately lifted. For small values of β, it seems from the tables that the degeneracy is not removed. If, however, we display the results with more digits in the decimal place, it is immediately clear that the degeneracy has indeed been lifted. As expected on physical grounds, the energy of any particular state decreases as β increases. We also observe that for any particular n, the state with higher angular momentum is more tightly bound than that with lower l. For the potential (1) this is consistent with the criterion of Grosse and Martin [22], who showed that for the potential $V(r)=-1 / r+U(r)$, if

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} U}{\mathrm{~d} r}\right)>0 \quad E_{n l^{\prime}}>E_{n l^{\prime}} \text { for } l<l^{\prime} \tag{7}
\end{equation*}
$$

and if

$$
\frac{\mathrm{d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} U}{\mathrm{~d} r}\right)<0 \quad E_{n l}<E_{n l^{\prime}} \text { for } l<l^{\prime}
$$

For small β, Mehta and Patil [1] obtained for s states the energy eigenvalues

$$
\begin{equation*}
E_{n 0}=-\frac{Z^{2}}{2 n^{2}}\left[1-\frac{4 \beta Z}{n a_{0}}-\frac{8 \beta^{2} Z^{2} \ln \beta}{n a_{0}^{2}}\right] \frac{e^{2}}{a_{0}}+\mathrm{O}\left(\beta^{3}\right) . \tag{8}
\end{equation*}
$$

Since (8) does not give energy eigenvalues for non-zero angular momentum states, we have developed an approximate formula for calculating energy eigenvalues for all angular momentum states, zero or non-zero. For small β, the potential (1) may be expanded as

$$
\begin{equation*}
V(r) \simeq-\frac{Z e^{2}}{r}+\frac{Z e^{2} \beta}{r^{2}} \tag{9}
\end{equation*}
$$

The eigenvalues of (9) may be readily calculated obtaining

$$
\begin{equation*}
E_{n l}=-\frac{Z^{2}}{2(n+L-l)^{2}} \frac{e^{2}}{a_{0}} \quad n=1,2,3 \tag{10}
\end{equation*}
$$

with

$$
L=-0.5+\sqrt{\left(l+\frac{1}{2}\right)^{2}+\left(2 Z \beta / a_{0}\right)} .
$$

In table 1 we also display the results for $1 s$ and $4 f$ states as calculated from (8) and (10) for the purpose of comparison. For small β, both equations (8) and (10) agree very well with that obtained in the framework of the shifted $1 / N$ expansion, i.e. from (3), the agreement with (10) being for all l values. Even for β as large as 15 , the result obtained by (10) for the 1 s state deviates from that obtained from (3) by about 54%, whereas (8) cannot even provide the binding. As l increases, the agreement between (10) and (3) gets progressively better, the deviation being about 22% for the $4 f$ state at $\beta=15$. Equation (10) may, therefore, be used for a quick estimate of the energy eigenvalues of the cutoff Coulomb potential (1).

Acknowledgments

On of the authors (PPR) would like to thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste. He is also indebted to Professor G Denardo for useful discussions.

References

[1] Mehta C H and Patil S H 1978 Phys. Rev. A 1743
[2] Mlodinow L and Papanicolau N 1980 Ann. Phys., NY 128 314; 1981 Ann. Phys., NY 1311
[3] Bender C, Mlodinow L and Papanicolau N 1981 Phys. Rev. A 251305
Kalara S 1982 University of Rochester report UR-812
[4] Yaffe L G 1982 Rev. Mod. Phys. 54 407; 1983 Phys. Today 36 (8) 50
[5] Ader J 1983 Phys. Lett. 97A 178
[6] Mlodinow L and Shatz M 1984 J. Math. Phys. 25943
[7] Moreno G and Zepeda A 1984 J. Phys. B: At. Mol. Phys. 1721
[8] Gangopadhyay R, Ghosh G and Dutta-Roy B 1984 Phys. Rev. A 30594
[9] Chatterjee A 1985 J. Phys. A: Math. Gen. 181193
[10] Dutt R, Mukherjee U and Varshni Y P 1986 Phys. Rev. A 34 777; 1985 J. Phys. B: At. Mol. Phys. 183311
[11] Sever R and Tezcan C 1987 Phys. Rev. A 352725
[12] Roy B and Roychoudhury R 1987 J. Phys. A: Math. Gen. 203051
[13] Sukhatme U and Imbo T 1983 Phys. Rev. D 28418
[14] Imbo T, Pagnamenta A and Sukhatme U 1984 Phys. Rev. D 291669
[15] Imbo T, Pagnamenta A and Sukhatme U 1984 Phys. Lett. 105A 183
[16] Imbo T and Sukhatme U 1985 Phys. Rev. D 312655
[17] Varshni Y P 1987 Phys. Rev. A 363009
[18] Maluendes S A, Fernandez F M and Castro E A 1987 Phys. Lett. 124A 215
[19] Ray A, Mahata K and Ray P P 1988 Am. J. Phys. 56462
[20] Roychoudhury R and Varshni Y P 1988 Phys. Rev. A 372309
[21] Atag S 1988 Phys. Rev. A 372280
[22] Grosse H and Martin A 1983 CERN report TH. 3715

[^0]: \ddagger Permanent address: Department of Physics, Visva-Bharati University, Santiniketan, WB 731235, India.

