
Bound states of the potential V(r) = -Ze2/(r + β)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 3161

(http://iopscience.iop.org/0305-4470/22/15/031)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


3 .  Phys. A: Math. Gen. 22 (1989) 3161-3165. Printed in the UK 

COMMENT 
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Received 9 January 1989 

Abstract. Energy eigenvalues of various states from n = 1 to n = 4 have been calculated in 
the framework of the shifted 1/ N expansion method. Results for s states are compared 
with those of Mehta and Patil for small p values. A new approximate formula has been 
developed for a quick estimate of energy eigenvalues for any angular momentum state. 

The problem of determining the energy eigenvalues of the cutoff Coulomb potential 
Ze * 

r + p  V ( r )  = -- P ’ O  

has been of some interest in the past El]. As pointed out in [l], this potential may 
serve as an approximation to the potential due to a smeared charge distribution rather 
than a point charge and may be appropriate for describing mesonic atoms. 

For s states the Schrodinger equation for the potential (1) yields exact closed 
solutions. But the actual determination of the eigenvalues from the zeros of the 
confluent hypergeometric function is not easy [ 11. Besides, for non-zero angular 
momentum states, this potential does not admit closed solutions. For such problems, 
therefore, one has to resort to approximate methods. Mehta and Patil [ l ]  carried out 
a dispersion theoretic study of the s wave bound states of this potential for small 
values of the parameter P and concluded that the energy eigenvalue E @ )  has a 
logarithmic branch cut at p = O  which precludes a strict perturbation series for E ( p )  
around p = 0. 

To make progress, we must make an expansion of some kind. In a number of 
bound-state problems [2-211 in non-relativistic quantum mechanics, 1/ N, where N is 
a very large number of spatial dimension, has proved to be a very suitable expansion 
parameter. It is interesting to note in this context that in quantum chromodynamics 
one also encounters the apparent absence of a relevant expansion parameter. The 
large-N expansion technique has yielded useful approximate solutions for problems 
in QCD. Here, of course, N is the number of colours [4]. In this paper we investigate 
the eigenvalues of the potential (1) using a variant of the 1/ N expansion method. For 
spherically symmetric potentials the usual choice of the expansion parameter has been 
1/K with K = N+21, instead of 1/N. The convergence of this method, however, is 
rather slow. In order to improve upon the convergence Sukhatme and Imbo [13] 
modified the standard method and introduced what has come to be known as the 
shifted 1/N expansion method, in which the expansion parameter is l /K,  with 

= N + 2 1 -  a and a is a free parameter. The choice of this shift parameter a was 
motivated by requiring agreement between the l / K  expansions and the exact analytic 
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results for the harmonic oscillators and Coulomb potentials. In a sense, the shift a 
provides a physically motivated resummation of the perturbation series for the energy 
eigenstates, improving its convergence. 

The reduced radial Schrodinger equation in N dimensions in terms of the shifted 
variable is 

where V( r )  is given by (1). The procedure for determining the energy eigenvalues 
from (2) is given in the paper by Imbo et a f  [14]. Hence, for the sake of brevity, we 
present here only the final expressions required to obtain the bound-state energies. 
The eigenvalues are given by 

where 

K =  N+21-a 

mw 
a = 2 - 2 ( 2 n r + l ) -  n ,=0,1,2 , . . .  h 

V'"'(x) being the nth derivative of V(x). r,, is determined from the equation 

y'" and y"' are given by 

h2  
8m 

y"' =-(l- a)(3 - a ) +  (1 +2n,)&+3(1 + 2 n r + 2 n ? ) t 4  

1 
hw 

- - [ E : +  6(  1 +2n,)i1E3+ (1 1 + 30nr +30n?)E:] 
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with 

It is easy to see from (3)  that for p + 0, y“ ’  and y”’ vanish identically and one recovers 
the Coulomb result for N = 3 

2’ e2 
2n2 a,  

n = n ,  + I + 1 .  E =--- 
nl 

Once r,  is determined from ( 4 d )  for the potential ( 1 )  in the three-dimensional world 
( N  = 3), the energy eigenvalues can readily be calculated from (3). We have calculated 
in atomic units ( e  = m = h = 1) the energy levels for the states from n = 1 to n = 4, 
which we display in tables 1 and 2.  With p non-zero, the accidental degeneracy of 

Table 1. Comparison of the energy eigenvalues. Column A is the result of the shifted 1/ N 
expansion, equation (3); column B is the result of Mehta and Patil, equation (8); column 
C is the result according to our approximation, equation ( I O ) .  

- E , ?  -4, 

P A B C A C 

0.0 
0.0001 
0.001 
0.01 
0.1 
1 .oo 
2.0 
3.0 
4.0 
5.0 

10.0 
15.0 

0.500 000 
0.499 812 
0.498 138 
0.482 534 
0.386 471 
0.180 023 
0.124 858 
0.098 123 
0.081 812 
0.070 629 
0.043 422 
0.032 061 

0.500 000 0.500 000 
0.499 800 0.499 799 
0.498 027 0.498 009 
0.481 842 0.480 947 
0.392 103 0.364 745 

- 1.500 000 0.125 000 
-14.590 355 0.076 201 

0.055 555 
0.043 966 
0.036 492 
0.020 000 
0.013 aa8 

0.031 250 
0.031 249 
0.031 245 
0.031 205 
0.030 813 
0.027 588 
0.024 971 
0.022 959 
0.021 341 
0.019 999 
0.015 576 
0.013 007 

0.031 250 
0.031 249 
0.031 245 
0.031 205 
0.030 810 
0.027 359 
0.024 353 
0.021 957 
0.020 000 
0.018 371 
0.013 096 
0.010 204 

Table 2. Energy eigenvalues ( - E , , , )  as a function of P for different excited states in atomic 
units. 

P 2s 2P 3s 3P 3d 4s 4P 4d 

0.0 0.125 00 
0.0001 0.12498 
0.001 0.12483 
0.01 0.123 33 
0.1 0.111 27 
1 .o 0.069 61 
2.0 0.054 38 
3.0 0.045 89 
4.0 0.040 23 
5.0 0.036 07 

10.0 0.024 80 
15.0 0.0 19 44 

0.125 00 
0.124 99 
0.124 92 
0.124 18 
0.11754 

0.065 72 
0.055 54 
0.048 59 
0.043 45 
0.029 44 

0.082 84 

0.022 a2 

0.055 55 
0.055 5 5  
0.055 52 
0.055 18 
0.052 13 
0.037 44 

0.026 96 
0.024 26 
0.022 23 
0.016 34 
0.013 32 

0.030 a5 

0.055 5 5  
0.055 5 5  
0.055 53 
0.055 32 
0.053 41 
0.041 86 
0.035 28 
0.03 1 05 

0.025 65 
0.018 74 
0.015 17 

0.028 00 

0.055 55 
0.055 5 5  
0.055 54 
0.055 41 
0.054 14 
0.045 01 
0.038 7a 
0.034 4a 

0.028 70 
0.03 1 25 

0.021 02 
0.016 97 

0.031 25 
0.031 25 
0.031 24 
0.031 12 
0.030 04 
0.023 57 
0.020 07 
0.017 90 
0.016 36 

0.01 1 66 
0.009 16 

0.015 ia  

0.031 25 
0.031 25 
0.031 24 
0.031 16 
0.030 41 
0.025 33 
0.022 09 
0.019 92 

0.017 01 
0.013 06 

0.018 29 

0.010 a2 

0.031 25 
0.031 25 
0.031 24 
0.031 19 
0.030 66 
0.026 65 
0.023 72 
0.021 59 
0.019 95 

0.014 37 
o.oia 62 

0.01 1 9a 
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the Coulomb potential is immediately lifted. For small values of p, it seems from the 
tables that the degeneracy is not removed. If, however, we display the results with 
more digits in the decimal place, it is immediately clear that the degeneracy has indeed 
been lifted. As expected on physical grounds, the energy of any particular state 
decreases as p increases. We also observe that for any particular n, the state with 
higher angular momentum is more tightly bound than that with lower 1. For the 
potential (1) this is consistent with the criterion of Grosse and Martin [22 ] ,  who showed 
that for the potential V (  r )  = - 1/ r + U (  r ) ,  if 

and if 

;( r 2 F )  < o  E,, < E,,. for I < I' 

For small p, Mehta and Patil [ l ]  obtained for s states the energy eigenvalues 

Since (8) does not give energy eigenvalues for non-zero angular momentum states, we 
have developed an approximate formula for calculating energy eigenvalues for all 
angular momentum states, zero or non-zero. For small p, the potential (1) may be 
expanded as 

Ze2 Ze2p V ( r )  -- -- +- 
r r2 ' 

The eigenvalues of (9) may be readily calculated obtaining 

e2 
n l  2 ( n + ~ - 1 ) ' ;  

n = 1,2 ,  3 
Z2 E = -  

( 9 )  

with 

L = -0.5 +J( I + ; ) ' +  ( 2 Z P / a 0 ) .  
In table 1 we also display the results for 1s and 4f states as calculated from (8) 

and (10) for the purpose of comparison. For small p, both equations (8) and (10) 
agree very well with that obtained in the framework of the shifted 1/N expansion, i.e. 
from (3), the agreement with (10) being for all I values. Even for p as large as 15, 
the result obtained by (10) for the 1 s  state deviates from that obtained from (3) by 
about 54%, whereas (8) cannot even provide the binding. As I increases, the agreement 
between (10) and (3)  gets progressively better, the deviation being about 22% for the 
4f state at p = 15. Equation (10) may, therefore, be used for a quick estimate of the 
energy eigenvalues of the cutoff Coulomb potential (1). 
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